Branching-stable point processes
نویسندگان
چکیده
The notion of stability can be generalised to point processes by defining the scaling operation in a randomised way: scaling a configuration by t corresponds to letting such a configuration evolve according to a Markov branching particle system for -log t time. We prove that these are the only stochastic operations satisfying basic associativity and distributivity properties and we thus introduce the notion of branching-stable point processes. For scaling operations corresponding to particles that branch but do not diffuse, we characterise stable distributions as thinning-stable point processes with multiplicities given by the quasi-stationary (or Yaglom) distribution of the branching process under consideration. Finally we extend branching-stability to continuous random variables with the help of continuous branching (CB) processes, and we show that, at least in some frameworks, branching-stable integer random variables are exactly Cox (doubly stochastic Poisson) random variables driven by corresponding CB-stable continuous random variables.
منابع مشابه
Central Limit Theorem in Multitype Branching Random Walk
A discrete time multitype (p-type) branching random walk on the real line R is considered. The positions of the j-type individuals in the n-th generation form a point process. The asymptotic behavior of these point processes, when the generation size tends to infinity, is studied. The central limit theorem is proved.
متن کاملContinuous-state Branching Processes and Self-similarity
In this paper we study the α-stable continuous-state branching processes (for α ∈ (1, 2]) and the α-stable continuous-state branching processes conditioned never to become extinct in the light of positive self-similarity. Understanding the interaction of the Lamperti transformation for continuous-state branching processes and the Lamperti transformation for positive, self-similar Markov process...
متن کاملA note on stable point processes occurring in branching Brownian motion
We call a point process Z on R exp-1-stable if for every α, β ∈ R with e + e = 1, Z is equal in law to TαZ + TβZ , where Z ′ is an independent copy of Z and Tx is the translation by x. Such processes appear in the study of the extremal particles of branching Brownian motion and branching random walk and several authors have proven in that setting the existence of a point process D on R such tha...
متن کاملContinuously stable strategies as evolutionary branching points.
Evolutionary branching points are a paradigmatic feature of adaptive dynamics, because they are potential starting points for adaptive diversification. The antithesis to evolutionary branching points are continuously stable strategies (CSS's), which are convergent stable and evolutionarily stable equilibrium points of the adaptive dynamics and hence are thought to represent endpoints of adaptiv...
متن کامل2 00 7 On continuous state branching processes : conditioning and self - similarity . December 10 , 2008
In this paper, for α ∈ (1, 2], we show that the α-stable continuous-state branching processes and the associated process conditioned never to become extinct are positive self-similar Markov processes. Understanding the interaction of the Lamperti transformation for continuous state branching processes and the Lamperti transformation for positive self-similar Markov processes permits access to a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2015